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The patterns of heatlines reported in this paper illustrate for the first time the true path of 
convective heat transfer through a saturated porous medium. Heatline patterns are reported 
for the fol lowing fundamental configurations: the boundary layer near an isothermal wall, 
the boundary layer near a wall with uniform heat flux, and the two-dimensional porous 
layer confined by two parallel plates. Emphasis is placed on the convection features that 
are being visualized for the first time by the heatline method, i.e., not by traditional methods 
such as the use of isotherms. It is shown that the heatlines of a f low in which the wall 
serves as heat sink are unlike the heatlines of the same f low with a wall that serves as 
heat source. The seepage f low with slip at the boundary is visualized by heatlines that 
leave a hot wall at an angle. The wall heat-flux distribution is visualized by the density 
of the heatlines that intersect the wall. The heatline pattern in fully developed f low of a 
pure fluid through a parallel-plate channel is also reported in order to emphasize that the 
pure-fluid pattern is not exactly the same as the pattern in the corresponding two- 
dimensional space filled with seepage f low through a porous medium. 
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Introduction 

The concepts of heatfunction and heatlines were introduced for 
the purpose of visualizing the true path of the flow of energy 
through a convective medium (Kimura and Bejan 1983; Bejan 
1984). The heatfunction accounts simultaneously for the 
transfer of heat by conduction and convection at every point 
in the medium. The heatlines are a generalization of the flux 
lines used routinely in the field of conduction. The concept of 
heatfunction is a spatial generalization of the concept of 
Nusselt number, i.e., a way of indicating the magnitude of the 
heat transfer rate through any unit surface drawn through any 
point on the convective medium. 

The first application of the heatline method was to the 
visualization of natural convection in an enclosure filled with 
fluid and heated from the side (Kimura and Bejan 1983). The 
method has been adopted in the heat transfer literature, and 
extended to several other convection configurations. Littlefield 
and Desai (1986) extended it to cylindrical coordinates and 
illustrated laminar natural convection in a vertical annular 
space. Trevisan and Bejan (1987) defined the equivalent concept 
of masslines in convection mass transfer, and used it to visualize 
natural convection driven by concentration gradients in a 
two-dimensional (2-D) rectangular enclosure. Aggarwal and 
Manhapra (1989a,b) employed heatlines in a study of unsteady 
natural convection in a cylindrical enclosure. Bello-Ochende 
(1987, 1988) visualized natural convection in tilted rectangular 
cavities and vertical square cavities heated from the side. 
Heatlines were also used to visualize natural convection in 
horizontal annuli (Ho et al. 1989; Ho and Lin 1989) and natural 
convection of cold water in a vertical annulus (Ho and Lin 
1990). 

Address reprint requests to Professor Bejan at the Department of 
Mechanical Engineering and Materials Science, Duke University, 
Box 90300, Durham, NC 27708-0300, USA. 

Received 22 February 1993; accepted 23 August 1993 

© 1994 Butterworth-Heinemann 

The common feature of these applications of the heatfunction 
method is that they all belong to the class of natural convection 
of pure fluids in enclosures. These flows are sufficiently 
complicated to require the use of numerical techniques, and 
this is why the heatfunction too had to be calculated 
numerically. On this background, the present paper contributes 
to the visualization of convective heat transfer in two ways: 

(1) it extends the heatline method to the field of convection in 
porous media. This is the first-time application of the 
heatline method in a field that has seen tremendous growth 
during the past two decades (Kaviany 1992; Nield and 
Bejan 1992); and 

(2) it shows that the heatfunction and the associated heatlines 
can be derived analytically in closed form. These 
expressions show analytically the superposition of local 
conduction and convection in the calculation of the heat 
transfer rate and its true path. 

Boundary layer near a cold isothermal wall 

In all the convection configurations discussed in this paper, it 
will be assumed that the porous medium is saturated with a 
single-phase fluid and that it can be modeled as homogeneous 
and isotropic. The solid and the fluid are locally in thermal 
equilibrium. One of the simplest convective flows of this kind 
is illustrated in Figure 1. The flow of far-field temperature T® 
and volume-averaged velocity U~ is parallel to a plane 
isothermal surface of a different temperature, T o. 

The flow and temperature fields in the thermal boundary 
layer region are expressible in closed form (Bejan 1984, pp. 
355-358): 

u = Uo~, v = 0 (1) 

0 = - erf , r /=  y (2) 
T~ - T O \ c t x /  
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Figure 1 The thermal boundary layer near a heated or cooled 
section of the wall of a porous medium permeated by parallel f low 

with the variables defined in the notation (see box). The parallel 
flow with slip at the wall, Equation 1, occurs in the Darcy and 
Darcy-Forchheimer regimes. The derivation of the heatfunc- 
tion H(x, y) associated with these flow and temperature fields 
begins with the observation that in the existing studies of 
convection in Cartesian coordinates (e.g., Bejan 1984), the 
longitudinal conduction term k O2T/Ox2 was not negligible in 
the energy equation. The special feature of the boundary-layer 
region of Figure 1 is that ~ 02T/Ox 2 is negligible in the energy 
equation, 

0T 0T 02T 
u - -  + v - -  = ~ - -  ( 3 )  

Ox Oy 0y 2 

This feature demands a special definition for the heatfunction, 
so that H is valid inside the boundary-layer region 

OH 
- -  = p c p u ( T -  T~or) (4) 
0y 

0H 0T 
- p c p v ( T -  Tree ) - k -  (5) 

0x 0y 

It is easy to verify that the heatfunction H(x, y) defined 
by Equations 4 and 5 satisfies the energy equation (Equation 
3) identically, provided that the reference temperature T~,f is a 
constant. It was pointed out in Trevisan and Bejan (1987) that 
T~=f can have any value, and that the heatline pattern is not 
unique: there is one pattern for each T~e f value. It is also true 
that one heatline pattern can be more instructive to the eye 
than another. This is why in this paper T~ef will always be the 
lowest temperature that occurs in the convective medium that 
is being visualized. We begin with the assumption that the 
isothermal wall is colder than the seepage flow, T o < T~o, and 
set Tr© f = T 0 for the remainder of this section. We will consider 
the reverse situation (hot wall, T o > To) in section 3. 

If we substitute the flow and temperature solution (Equations 

1 and 2) into the H definition (Equations 4 and 5), we obtain, 
in order, 

a/7 
- -  = O ( q )  ( 6 )  

o/7 ~o 
a--~ = a~ (7) 

{ uo~'l '/~ 

H 
/7 = (9) 

k(T~ - To) Pe~/2 

and PeL= Uo~L/~. Note that the quantity used as the 
denominator in the nondimensionalization of H is the scale of 
the total heat transfer rate through the surface of length L. We 
will return to this property of the dimensionless heatfunction 
/7 at the end of this section. The result of integrating Equations 
6 and 7 and using Equation 2 is 

/7(2, ~) = 2u2(r/0 + 28') 

= ~1/2[q e r f ( ~ ) +  ~/~ exp ( - -  ~ )  1 (10) 

The first line of Equation 10 shows the superposition of 
convection (q0) and transversal conduction (28') in the 
calculation of the local heat transfer rate (the heatfunction). 
The factor O(r/) = q0 + 28' is the similarity heatfunction profile. 
This function is as much a characteristic of the boundary layer 
as is the similarity temperature2rofile 0(r/). 

Figure 2 shows some of the H =  constant curves calculated 
based on Equation 10. This pattern of heatlines visualizes 
several features of convection near a cold wall. First, the energy 
that is eventually absorbed by the wall is brought into the 
boundary layer by fluid from upstream of the cold section of 
the wall. The boundary-layer region is delineated approx- 
imately by r /= 2, which in Figure 2 is represented by the dotted 
line ~ = 2~ 1/2. 

Second, the heatlines that enter the wall are denser near 
= 0. This is a way of visualizing the higher heat fluxes that 

exist near the tip, i.e., a wall heat flux that decays as x-1/2 
in the flow direction. 

Third, the heatlines are perpendicular to the wall as they 
enter the wall. This is a consequence of the fact that the wall 
is colder than the distant medium, T~e f = To, which means that 

Notat ion 
cp Fluid specific heat at constant pressure 
D Wall-to-wall spacing 
H Heatfunction 
/7 Dimensionless heatfunction, Equation 9 
/7 Dimensionless heatfunction, Equation 14 
H .  Dimensionless heatfunction, Equation 18 
k Thermal conductivity of porous medium saturated 

with fluid 
L Length of wall section with heat transfer 
Nu Nusselt number 
PeL Peclet number, U=L/~ 
Peo Peclet number, UD/¢ 
q" Heat flux 
T Temperature 
T m Mean temperature 
T~e r Reference temperature 

T O Wall temperature 
T~o Free-stream temperature 
u Longitudinal velocity 
U Mean velocity 
Uoo Free-stream velocity 
v Transversal velocity 
x, y Cartesian coordinates 
~, y Dimensionless coordinates, Equation 8 
~2, ~ Dimensionless coordinates, Equation 22 
X T Thermal entrance length 

Greek symbols 
Thermal diffusivity of saturated porous medium 

r/ Similarity variable, Equation 2 
0 Similarity temperature profile, Equation 2 
p Fluid density 
z Similarity temperature profile, Equation 13 
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The boundary-layer heatlines near a cold isothermal wall 

at the wall OH/Oy = 0 (cf. Equation 4). It is important to note, 
however, that the perpendicularity of the heatlines at the wall 
is due to having chosen T,e f = T o, i.e., to the convention that 
the reference temperature is the lowest temperature that occurs 
in the convective medium. 

Fourth, the heatfunction increases along the wall because the 
wall absorbs the heat transfer released by the fluid. The 
dimensionless heatfunction increases f rom/4 = 0 at the tip to 

= 1.128 at the trailing edge. According to Equation 9, the 
heatfunction at the trailing edge has the value H(x = L, 
y = 0 )=  1.128k(T~o- To)PeL 1/2. This trailing-edge H value 
matches exactly the total heat transfer rate through the wall of 
length L (e.g., Bejan, 1984, p. 358). 

Boundary layer near a hot isothermal wal l  

Consider now the opposite arrangement in which the wall is 
warmer than the distant porous medium, T o > T~o. Since in this 
case the transfer of heat is from the wall to the flow, we expect a 
pattern of heatlines that differs markedly from that of Figure 
2. The derivation of H(x, y) begins with setting Trof = Too in 
Equations 4 and 5 and follows the steps contained between 
Equations 6 and 10. Instead of (Too - To) in the denominator 
of the /4 definition (Equation 9), we use the temperature 
difference (T O - Too), which is positive. For brevity, we list only 
the final result: 

~(92, ~) = ~l/2Iq erfc (r/2) -- ~52/2 exp ( - -  ~ )  ] (11) 

Figure 3 shows the pattern of heatlines that corresponds 
to the heatfunction of Equation 11. The heatlines come out of 
the wall at an angle because, unlike the situation in Figure 2, 
the gradient t3H/c~y is not zero at the wall. Note that when the 
wall is warmer than the convective medium, the slip at y = 0 
makes the right side of Equation 4 finite and constant, 
t3H/Oy = pcpU~(T o --Too). Even though t3H/Oy is constant 
along the wall, the angle at which the heatlines emerge from 
the wall varies with x, because (OH/Ox)r= o depends on x. 

Above the wall, the heatlines are bent even more by the flow, 
as the effect of transversal conduction weakens. The denser 
heatlines near £ = 0 indicate once again the higher fluxes that 
are known to be present near the leading edge of the heated 
section of the boundary. The wall heatfunction /4(~,0) 

decreases as ~ increases because the wall loses heat to the 
boundary layer. The trailing-edge heatfunction values /~(1, 0) 
corresponds to the total heat transfer rate released by the wall. 

Overall, the heatlines occupy the same region as the 
boundary layer, and, since this region is physically slender, the 
heatlines are oriented almost in the same direction as the flow. 
This pattern is unlike the one seen near a cold wall (Figure 2), 
where the heatlines originate from upstream and cut across the 
boundary-layer region. 

Boundary layer near a wal l  w i th  uni form 
heat f lux 

We now turn our attention to the visualization of the thermal 
boundary layer when the wall section of length L releases the 
uniform heat flux q" into the saturated porous medium of 
Figure 1. The solution for the temperature distribution in the 
thermal boundary layer with uniform flux was developed 
numerically and reported in Bejan (1984), pp. 358-359, 
384-385). We use this opportunity to point out that the same 
solution can be expressed analytically in closed form, 

q"(o~x') 1/2 
T(x, y) = Too + ~ \ ~ £ j  z(q) (12) 

where the similarity temperature profile is 

r(q) = n~ ~ exp - - ~/erfc (13) 

The development of the boundary-layer heatfunction 
H(x, y) follows the steps outlined in section 2. For brevity, we 
are omitting these steps while pointing out that the T~e f 
convention adopted under Equation 5 means that in Equations 
4 and 5 we set T~of = Too, because the wall is warmer than 
the medium. The new dimensionless heatfunction/-t is defined 
as 

121(2, .~) _ H(x, y) (14) 
q"L 

where q"L is the total (known) heat transfer rate through the 
section of length L. In the end, the analytical expression that 
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Figure 3 The boundary-layer heatlines near a hot isothermal wall 
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is obtained for the heatfunction is 

/-t(~, ~ )=  ~[~ r(r/)+ z'(r/)] 

y ~  + = In,/2 exp ( ~ )  -- (1 ~ )  erfc ( ~ ) ]  (15) 

The corresponding heatline pattern is shown in Figure 4, 
which can be compared directly with Figure 3 to see the effect 
of the uniform-flux boundary condition. The uniform flux is 
why in Figure 4 the heatlines that leave the wall are equidistant: 
note that the wall heatfunction decreases linearly while 
increases, /4(~, 0 ) = - ~ .  The other features noted in the 
discussion of Figure 3 appear also in Figure 4. The trailing 
edge heatfunction value H(1, 0) = - 1 means that, from the tip 
to that location, the wall has released all the heat transfer of 
which it is capable. 

Two-dimensional layer with hot 
isothermal walls 

The preceding three sections dealt with the visualization of 
forced-convection boundary layers, which are an essential 
feature encountered in most external convection configura- 
tions. Consider now the phenomenon of internal convection, 
or convection in a confined porous medium. The simple form 
of forced convection in internal flow is presented in Figure 5. 
The parallel-plate channel of spacing D contains a saturated 
porous medium through which fluid seeps in uniform flow 
(u = U, v = 0) along x. 

The heatlines of the entrance (or thermally developing) 
region will have features similar to those seen already in Figures 

U '1 D/2 

0 t 

Porous medium 
l q,, 

TIn(O) 0 L x 

To(X) ~ q "  
- D / 2  / 

Figure 5 Forced convection in a 2- D porous layer confined by two 
parallel plates 
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2 to 4. For  this reason, we focus strictly on the fully developed 
region, and assume that its length L is at least one order of 
magnitude greater than the entrance length. 

In this section and the next, we assume that the walls are 
isothermal at T o, while the fluid that enters through the x = 0 
plane has the mean temperature Tr,(0). The temperature 
distribution in the saturated porous medium can be determined 
based on the classical approach, as for laminar flow through 
a pipe (e.g., Bejan 1984, pp. 89-91). The end result is 

(16) 

with 

T O - Tm(x ) // n2x "~ UD 
T,(0) - e x p / - ~ - ~ / '  \ t) t ' eo /  P e ° = - -  (17) To 

It is worth noting that the n 2 factor appearing in Equation 17 
is the value of the Nusselt number based on the hydraulic 
diameter 2D, namely, Nu = q"(x)2D/k[T o -- Tin(x)] = n 2. 

The heatfunction H(x, y) can be derived from Equations 4 
and 5 by using the inlet temperature as the lowest temperature 
in the medium, Tre f = Tin(0 ). For the heatfunction scale in the 
nondimensionalization of H, we used the total heat transfer 
rate released by the two walls in the limit where the channel 
is long enough so that Tm(L)-~ To. That scale is 
pcpUD[T o - Tin(0)]; therefore, we set 

H 
H ,  = (18) 

pcpUO[T o -- Tin(0)] 

and after integrating Equations 4 and 5 in combination with 
Equations 16 and 17 and the flow solution (u = U, v = 0), we 
obtain 

Y ~ s i n ( D Y ) e x p (  rc2x ~ (19, 
H,(x ,  y) = ~ -- O Peo,] 

The distribution of heatlines in the 2-D porous layer with 
hot isothermal walls is shown in Figure 6. The heatlines in the 
immediate vicinity of the two walls are similar to what we saw 
in Figure 3 for the single boundary layer on a hot isothermal 
wall. The heatlines are inclined in the flow direction because 
of the flow slip condition. They become less dense as x increases 
because the heat flux decays exponentially in accordance with 
the exponential decay of the mean temperature difference 
(Equation 17). 

Figure 6 provides a bird's-eye view of how only a certain 
section of the isothermal wall contributes in a real sense to the 
total heat transfer that is carried downstream by the fluid. That 
section is located upstream, where x/(D P%) is less than about 
0.5. The heatlines produced by this active section end up as a 
longitudinal bundle of parallel lines in the downstream section, 
i.e., in the region where the walls are inactive in a heat transfer 
sense. It is interesting that the heatlines in this longitudinal 
downstream bundle are equidistant, even though their points 
of origin on the walls are unevenly spaced. 

Hot wail 
I12 O. 

0 

0 0,l 0.2 0.3 0.4 0.$ 
X 

D Pe D 

Figure 6 The heatlines in the fully developed region of the f low 
of Figure 5, when the walls are isothermal and hot 
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The fact that the cross formed by the two H,  = 0 lines is 
visible in Figure 6 is an indication that 1) the leading section 
of the channel was blown up, and 2) that H .  = 0 was 
assigned to the corner points (x = 0, y = +__D/2). The latter 
condition is the result of having chosen the heatfunction length 
scale listed above (Equation 18), which is the correct length 
scale when the channel is "long enough" such that TIn(L) ~ To, 
i.e., when the abscissa group x/D Pe o is much greater than 1. 
Note that if Figure 6 is replotted to show the entire (i.e., 
the proper) range of relevant abscissa values, all the way to 
x/D Pe D >> 1, the crossing of the H .  = 0 lines becomes invisible 
(see the top drawing of Figure 8). 

Two-dimensional layer with cold 
isothermal walls 

The analytical expression for the heatfunction in a layer with 
cold isothermal walls can be derived using the same approach 
as in the preceding section. One difference is that the reference 
temperature is now the wall temperature, T~e f = T o. The 
dimensionless heatfunction H .  is defined as in Equation 18, 
except that the positive difference [Tin(0)- To] replaces the 
temperature difference shown in the denominator in Equation 
18. We omit the algebra and give only the final expression: 

7C2X 

1 sin ( ~ )  exp ( -  D peo / U.(x, y) = ~ (20) 

Figure 7 shows the constant-H, lines recommended by 
Equation 20. They show how the energy is brought into the 
porous medium by the hot fluid, and how it is later deposited 
on the cold walls. Only the upstream wall section of order 
x/(D Peo) ~ 0.2 is active as a heat sink. The heatlines are now 
perpendicular to the wall at the point where they cross the wall. 
This feature was encountered also in the boundary layer on a 
cold isothermal wall (see Figure 2). 

The main conclusion to be drawn from Figure 7 is that the 
pattern of heatlines changes dramatically as the role of the walls 
switches from that of heat source (Figure 6) to heat sink (Figure 
7). This dramatic change was made visible also by Figures 2 
and 3. 

Comparison with the heatlines of fully 
developed f low in a parallel-plate channel 
with pure fluid 

Finally, it is worth mentioning that the heatline patterns drawn 
in Figures 6 and 7 for the 2-D porous layer are identical to the 
heatlines of a parallel-plate channel with pure fluid in "slug" 
flow (u = Uoo, v = 0). For the pure fluid, the k and c~ values 
that are involved in Equations 16 to 20 are properties of the 
fluid. 

The immediate question, then, is what happens to the 
pure-fluid heatlines if, instead of the assumed slug flow, the 

Cold  wal l  
I/2 

D 

0 - 

.u, I ~  -°~ ~.~ , v ~  , 

x 

n Pe o 

Figure 7 The heatlines in the fully developed region of the f low 
of Figure 5, when the walls are isothermal and cold 
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Figure 8 The heatlines in the fully developed f low of a pure fluid 
through a parallel-plate channel with uniform heat flux 

parallel-plate channel contains the real fully developed flow. 
To answer this question analytically, we assumed that the heat 
flux q" is distributed uniformly over the wall length L (the 
To = constant case would require numerical work). For 
conciseness we give only the final results. The heatfunction for 
the channel with hot walls, TO(x) > Tin(x), is 

H ^(3 1 ) 
= x  ~ -93 

2Lq" 4 -- 

1 Dpe  // 117 249 *3 21 95 3 ) 
+ 1 2 8 L  Dk,- 35 -9 + ~ -  y - 5 -  +7-97 (21) 

where 

x y 
~2 = - ,  33 - (22) 

L D/2 

The corresponding result for the channel with cold walls, 
To(x ) < T,,,(x), is 

H = ( 1 - ~ 2 ) ( 3 3 ~ - 1  ) 
2Lq" 4 4 )3 

+ l ~ 8 D p e o ( - l S ~ + l l - 9 3 - ~ - g s + ~ 3 3  v) (23) 

The heatline patterns described by Equations 21 and 23 
are presented in Figure 8. One important observation is that 
the group (D/L) Pen, which appears in the above expressions, 
has a negligible effect on the heatlines because it is less than 
10 in an order-of-magnitude sense, 

D 
Peo < 10 (24) 

such that Equation 23 is replaced approximately by 

--- (1 - x) - 9 -  2Lq" 4 4 y (25) 

Inequality 24 stems from the observation that the length of 
the fully developed section, L, is greater than the thermal 
entrance length Xv, where X r ~ 10-1D Pep (Bejan 1984, 
p. 96). 

The uniform heat-flux thermal boundary condition is 
visualized by the equidistant heatlines that cross the parallel 
plates. The general outlook of the heatline pattern changes from 
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the case of the hot wall (Figure 8, top) to that of the cold wall 
(Figure 8, bottom), in the same way as in going from Figure 6 
to Figure 7 in the two 2-D porous layer. 

One important  feature that distinguishes Figure 8 from 
Figures 6 and 7 is that in pure-fluid fully developed flow the 
heatlines are always normal to the wall, regardless of whether 
the wall is hot or cold. This feature visualizes the no-slip 
condit ion (u = 0 at y = _ D/2), which distinguishes the flow 
of the pure fluid from the seepage flow of Figures 1-7. Note 
that in pure fluids the no-slip condition leads to 8H/dy = 0 
on the walls (cf. Equation 4), regardless of the value chosen for 
Tr©f • 

Conclusions 

In this paper we displayed the heatline patterns of the most 
basic forced-convection flows in porous media. These patterns 
illustrate for the first time the true path of convective heat 
transfer in the configurations of Figures 1 and 5 and in the 
more complex configurations that involve forced-convection 
boundary  layers and channel flows. The fundamental  nature of 
the simple configurations of Figures 1 and 5 permitted us to 
develop the associated heatfunctions in closed form and to 
demonstrate analytically the superposition of convection and 
conduction at every point in the convective medium. 

Since the objective of this study was to contribute to the 
visualization of convection in porous media, it is appropriate 
to review some of the convection features that are visualized 
by heatlines and not  by a traditional method such as the use 
of isotherms: 

(1) the heat transfer path through a medium in which the wall 
serves as heat source is unlike the path through the same 
medium (and flow) in which the wall serves as heat sink 
(compare, for example, the boundary layer in Figures 2 and 
3 or the 2-D layer in Figures 6 and 7); 

(2) the flow with slip past a hot boundary  is visualized by 
heatlines that are inclined at an angle as they leave the 
boundary  (see Figures 3 and 6); 

(3) the distribution of wall heat flux is visualized by the density 
of the heatlines that cross that wall. Figures 2, 3, 6, and 7 
illustrate the uneven distribution of heat flux along 
isothermal walls, while Figures 4 and 8 show the equidistant 
heatlines that emerge from a wall with uniform heat flux; 
and 
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(4) the heatline pattern in a parallel-plate channel with pure 
fluid in fully developed flow is not  identical to the pattern 
in the same parallel-plate space filled with a saturated 
porous medium with fully developed seepage flow. 
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